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Abstract: This paper deals with the analysis of truss structures with uncertain elastic modulus under 

deterministic loads. The uncertain parameters, which characterize the elastic modulus, are determined by 

examining the experimental data obtained from tensile tests on several steel bars performed in the 

Laboratory of Structures and Materials of the Department of Engineering (University of Messina). 

Analyzing the experimental data, both the probabilistic and non-probabilistic models are examined. In the 

first case the random uncertainties are completely characterized through the knowledge of the probability 

density function, which is determined by applying the maximum entropy approach and compared with 

Gaussian model. In the second case the interval model is adopted and the uncertainties are characterized by 

the midpoint and deviation values. Finally, in order to compare the propagation of these two models of 

uncertainties, the response of a benchmark truss structure is evaluated and the results in terms of 

displacements are compared. 

Keywords: probabilistic uncertainties, maximum entropy approach, interval analysis, rational series 

expansion 

 

1. Introduction 

 

In recent years it has been recognized that the analysis of structural systems should take into account all the 

relevant uncertainties present in the analyzed problem. Uncertainties associated with an engineering 

problem, due to the different sources, can be divided into two main groups: random uncertainties and 

epistemic uncertainties (Elishakoff and Ohsaki, 2010). The random uncertainties are completely 

characterized through the knowledge of the full set of its statistics (which could be moments, cumulants or 

other derived quantities) or, which is the same, through the knowledge of its probability density function 

(PDF). Despite their success, unfortunately the probabilistic approaches give reliable results only when 

sufficient experimental data are available to define the PDF of the fluctuating properties. If available 

information are fragmentary or incomplete so that only bounds on the magnitude of the uncertain structural 

parameters are known, non-probabilistic approaches can be alternatively applied. In the framework of non-

probabilistic approaches the interval model, which stems from interval analysis (see e.g. Moore, 1966; 

Moore et al., 2009), may be considered as the most widely used analytical tool among non-probabilistic 
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methods (Muhanna and Mullen, 2001; Moens and Vandepitte, 2005). According to this approach, the 

fluctuating structural parameters are treated as interval numbers inside their lower and upper bounds.  

In the framework of probabilistic approaches usually the uncertainties are assumed as stochastic 

variables modelled by Gaussian distributions. However, often, this distribution does not reflect the actual 

one. As a consequence the numerical results obtained by assuming the Gaussian approximations could be 

very far from the effective ones. On the contrary in this paper, starting from data obtained from experiments 

on several steel bars performed in the Laboratory of Structures and Materials of the Department of 

Engineering (University of Messina), the PDF of elastic modulus of the material is derived by applying the 

maximum entropy approach proposed by Alibrandi and Ricciardi (2008). Then the probabilistic response of 

a benchmark truss structures is determined once the inverse of the global stochastic stiffness matrix is 

evaluated in approximate explicit closed form by applying the recently proposed Rational Series Expansion 

(RSE) (Muscolino and Sofi, 2013; Muscolino et al., 2014). So operating a substantial computational savings 

over classical Monte Carlo Simulation (MCS) is obtained.  

In the framework of interval analysis the midpoint and deviation values of the uncertain elastic modulus 

are determined by analyzing experimental data. Then, approximate explicit expressions of the bounds of the 

interval nodal displacements of the benchmark truss structures are derived by applying the so-called 

Interval Rational Series Expansion (IRSE) (Muscolino and Sofi, 2013; Muscolino et al., 2014) recently 

proposed to evaluate the explicit inverse of the global stiffness matrix with interval modifications. 

 

 

2. Preliminary concepts and definitions 

 

2.1. EQUATIONS GOVERNING THE PROBLEM OF TRUSS STRUCTURES  

It is well known that the equilibrium equations of a truss structure with n unconstrained nodal 

displacements and m elements, subjected to known static loads, can be written as follows: 

;       equilibrium equation;

;       constitutive equation;

.       compatibility equation.

T
C Q = f

Q = R q

C U = q

 (1a,b,c) 

where U  is the is the vector, of order n , of nodal displacements; f  is the vector, of order n , collecting 

the external loads applied at the nodes; Q and q  are the vectors , of order m , of internal forces and 

deformations respectively; 
T

C  is the n m  equilibrium matrix and R  is the m m  diagonal internal 

stiffness matrix. Let us now indicate with j j j jE A L   the axial stiffness of the j-th element, where jE , 

jA  and jL  are the Young elastic modulus, the area and the length of the j-th element, respectively. Let us 

assume now that r m  elements possess uncertain elastic modulus. Denoting with j the dimensionless 

fluctuation of the j-th uncertain elastic modulus around the nominal value, 0, jE , of the j-th element, such 

that  0, 1j j jE E   , one gets: 
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 0, 0,1 (1 )j j j j j j jE A L        (2) 

where 0, 0,j j j jE A L   is the nominal value of the axial stiffness of the j-thelement with 1,2, ,j r m  . 

Then, the internal stiffness matrix ( )R α can be written as: 

0 , ,

1

( ) = + , 
r

T

j E j E j

j




R α R l l  (3) 

where α  is the vector collecting the r uncertain dimensionless fluctuations j , 
0R  is the diagonal nominal 

internal stiffness matrix and ,E jl  is a vector of order n with only the j-th element equal to 0, j  and the 

other ones equal to zero. Notice that the dyadic product , ,

T

E j E jl l  gives a change of rank one to the nominal 

internal stiffness matrix. After simple substitutions into Eqs. (1) the solving equilibrium equation, in the 

framework of the displacement method, can be written as:  

( ) ( ) K α U α f  (4) 

where ( )U α  is the vector, of order n , of the unknown nodal displacement depending on uncertainties and 

( )K α  is the uncertain stiffness matrix which, by means of Eqs. (1), can be written as: 

( ) ( )TK α C R α C  (5) 

Then, according to Eq. (3), the stiffness matrix ( )K α , which possesses r  uncertain parameters. can be 

rewritten as:  

 0 0

1

( )
r

j j

j




    K α K K K K α  (6) 

where
0K is the nominal stiffness matrix and jK is a rank-one matrix defined respectively as: 

0 0 ;  T T

j j j K C R C K v v  (7a,b) 

with the vector jv  given as:  

,

T

j E jv C l  (8) 

Finally, the solution of Eq. (4) can be formally written as: 

1( ) ( )U α K α f  (9) 

Because of the presence in Eq. (9) of the vector α , collecting the uncertain dimensionless fluctuations

j , the solution of previous equation can be obtained efficiently if explicit expressions of the inverse of the 

random stiffness matrix ( )K α  are known. To do this, in the next subsection a new series expansion is 

described.  
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2.2. EXPLICIT INVERSE OF THE STIFFNESS MATRIX FOR STRUCTURAL SYSTEM WITH RANK-ONE 

MODIFICATIONS   

In order to derive the explicit expression of the inverse of the stiffness matrix, in this section a recently 

proposed series expansion, called Rational Series Expansion (RSE), is described (Muscolino and Sofi, 

2013; Muscolino et al., 2014). The RSE has been obtained by properly modifying the Neumann series 

expansion in the case of structural systems with more rank-one modifications in the stiffness matrix. So 

operating an approximate explicit expression of the inverse of an invertible matrix with r modifications was 

derived. In particular, for truss structures, the matrix  K α , which collects the rank-r change in the 

stiffness matrix, can be written as the superposition of r rank-one matrices as follows: 

 
1

 
r

T

i i i

i




 K α v v  (10) 

where the vector 
iv  has been defined in Eq. (8). Moreover, since the fluctuating dimensionless 

uncertainties are lesser than one, that is 1s , it is possible to evaluate in explicit form the approximate 

inverse of stiffness matrix by retaining only the first order term as follows: 

 
1

1 1

0 0

1 1 1+

r r
T i

i i i i

i i i id








 

 

 
    
 

 K α K v  v K D  (11) 

where the following quantities have been introduced: 

1 1 1

0 0 0;T T

i i i i i id    v K v D K v  v K .  (12a,b) 

Notice that Eq. (11) certainly holds if the following condition is satisfied:  

 <1.i id               (13) 

 

2.3. EXPLICIT MEAN-VALUE VECTOR AND COVARIANCE MATRIX FOR STOCHASTIC UNCERTAINTIES  

This section addresses the problem of static analysis of structures in which the uncertainties are modelled as 

zero-mean stochastic independent variables 
i , with assigned Probability Density Function (PDF) ( )

i
p x , 

collected in the vector α . In this case the solution of equilibrium equations depend on stochastic variables, 

that is: 

    K α U α f  (14) 

where the tilde denotes a stochastic quantity. By applying Eq. (11), the inverse of the stochastic matrix 

 K α can be evaluated as: 

 
1

1 1

0 0

1 1 1+

r r
T i

i i i i

i i i id








 

 

 
    
 

 K α K v  v K D  (15) 
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where 0K  is the stiffness matrix of the nominal system while and i id D  have been defined in Eq. (12). 

Accordingly, the solution of the set of linear stochastic Eq. (14) can be written in the following 

approximate explicit form: 

   
1 1

0

1 1+

r
i

i

i i id





 



   U α U K α f K f D f  (16) 

Finally, since zero-mean stochastic variables 
i  are realistically assumed independent ones, the mean-

value vector and the covariance matrix of the stochastic response vector U can be evaluated, respectively, 

as follows: 

1

0

1

22

1

E E ;
1+

E E E
1+ 1+

r
i

i

i i i

r
T T Ti i

i i

i i i i i

d

d d





 

 







  

   
              





U

U U U

U K f D f

UU D f f D



  

 (17a,b) 

where E   is the stochastic operator defined as: 

2 2

E ( ) d ; E ( )d .
1+ 1+ 1+ 1+i i

i i

i i i i i i

x x
p x x p x x

d x d d x d
 

 

 

 

 

     
     

     
   (18a,b) 

Obviously, if the stochastic variable is defined in a finite interval  ,a b  the previous relationships can be 

rewritten as: 

2 2

E ( )d ; E ( )d .
1+ 1+ 1+ 1+i i

b b

i i

i i i i i ia a

x x
p x x p x x

d xd d x d
 

 

 

   
    

   
   (19a,b) 

The previous equations provide substantial computational savings over classical MCS method since they 

just involve the statistics of the random variables  1+i i id   without requiring the inversion of the 

global stochastic stiffness matrix. Furthermore, the closed-form expression of the random response in Eq. 

(16) enables one to evaluate higher-order statistical moments useful to determine the PDF of the response.  

 

2.4. EXPLICIT BOUNDS OF THE RESPONSE FOR INTERVAL UNCERTAINTIES 

Let us consider now the case in which the uncertainties are modelled with uncertain-but-bounded 

parameters modeled as interval variables. According to interval analysis, the vector α , of order r, in this 

case has to be defined as:  , α α α . In the following with the apex I is denoted an interval quantity. The 

vector I
α , collects the r uncertain-but-bounded symmetric fluctuations of axial stiffness around their 

nominal value and defines a r-dimension bounded convex set-interval vector of real numbers, such that 
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 α α α  whose i-th element is i

 . Without loss of generality it is assumed the midpoint value vector, 
0α , 

equals to 0. Then the deviation amplitude vector, α , which collect the fluctuations around the midpoint is 

given as: 

 0

1
 

2
      α 0 α α α α α  (20a,b) 

where the symbols α  and α  denote the lower and upper bound vectors respectively. As a consequence of 

Eqs. (20), the following relationship holds for the generic interval variable 

      ˆ I

i i ie    (21) 

where    ˆ 1, 1 1,2, ,I

ie i r     is the so-called Extra Unitary Interval (EUI) (Muscolino and Sofi, 2012; 

Muscolino and Sofi, 2013).  

For deterministic static loads and uncertain-but-bounded parameters, the equilibrium Eq. (5) can be 

rewritten as: 

( ) ( )I I K u f   (22) 

It follows that the stiffness matrix ( )I
K  , depends only on deviation amplitude value of the r uncertain-

but-bounded parameters and according to interval formalism is written as: 

  0 0

1 1

ˆ ˆ
r r

I I T I

i i i i i i

i i

e e
 

      K K v v K K  (23) 

where: 

T

i i i i K = v v  (24) 

The goal is now to find the narrowest interval 
I

u  containing all possible response vectors u , satisfying 

the equilibrium Eq. (22), when the vector α  assumes all possible values inside the interval vector 
I

α . The 

problem is formally solved as: 

     
1

I I


u K α f  (25) 

Since in structural engineering the stiffness matrix is regular and it can be assumed that the uncertainties 

are not large, so that 1 i i  , the inverse interval of the stiffness matrix, by applying the Improved 

Interval Analysis (Muscolino and Sofi, 2012), can be determined by the applying so called Interval Rational 

Series Expansion (IRSE) (Muscolino and Sofi, 2013; Muscolino and al., 2014) as (see Eq. (11)): 

 
1

1
1

0 0

1 1

ˆ
ˆ

ˆ1

Ir r
I I T i i

i i i i iI
i i i i i

e
e

e d











 

 
     

  
 K α K v  v K D  (26) 
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Obviously, the accuracy of Eq. (26), which gives the explicit inverse of a matrix with r  fluctuating 

parameters, depends on the magnitude of the fluctuations 
i . Alternatively, Eq. (26) can be rewritten in 

the so-called affine form (Muscolino and Sofi, 2013) as: 

   
1

1
1

0 0 0,

1 1

ˆ ˆ
r r

I I T I

i i i i i i i i

i i

e a a e






 

 
       
 

 K α K v  v K D  (27) 

where 0, ia  and ia  are given by: 

 

   

2

0, 2 2
0; 0.

1 1

i i i
i i

i i i i

d
a a

d d

 

 

 
    

   
 (28a,b) 

Then the solution of Eq. (22) is given respectively as: 

   
1

1

0 0,

1

ˆ
r

I I I

i i i i

i

a a e






    u K α f K f D f  (29) 

Due to the monotonicity of the components of the vector ( )I
u α  with respect to the generic 

i , the 

lower and upper bounds of displacements can be evaluated respectively as:  

0 0;        u u u u u u  (30a,b) 

where the following vectors are introduced: 

1

0 0 0,

1 1

;    
r r

i i i i

i i

a a

 

     u K f D f u D f  (31a,b) 

with the symbol    which denotes the component wise  absolute value. 

 

3. Probability density function derived by experimental data 

In the framework of structural engineering usually the uncertainties are assumed as stochastic variables 

modelled by Gaussian distributions. However, often, this distribution does not reflect the actual one. As a 

consequence the numerical results obtained by assuming the Gaussian approximations could be very far 

from the effective ones. To overcome this drawback, in this section, a method to derive the distribution 

coherent in some way with the histogram obtained analysing the results of a set of experimental data is 

presented. The method is based on the maximum entropy principle proposed by Alibrandi and Ricciardi 

(2008), which derived the effective PDF coherent with experimental data in terms of moments.  

Let denote with  ˆ
X

p x  the approximating PDF of the given random variable X , defined in a finite 

interval  ,a b , which can be written as superposition of basis PDF  ( ) ; ,i

i iX
x x h : 

   ( )

1

ˆ ; ,
N

i

i i iX X
i

p x p x x h


            (32) 
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where the i-th basis PDF  ( ) ; ,i

i iX
x x h , having unitary area in the interval domain [ , ]a b , depends on the 

location xi and bandwidth hi. The location parameters are N points belonging to the domain [ , ]a b , chosen 

for sake of simplicity with a constant step 
1i ix x x   , (with 1,2, , 1i N  ). In a similar way it has 

been assumed a constant bandwidth parameter 
ih h q x   , a good choice is 2 3q  . 

The superposition of basis PDF (Eq. (32)) represents a PDF if and only if the coefficients ip  satisfy the 

following conditions: 

1

0 1,     1

1                     

i

N

i

i

p i N

p


  







 (33) 

Equations (32) and (33) show that a generic PDF can be expressed as a linear convex combination of 

simpler PDFs, whose coefficients have the meaning of probabilities. In order to evaluate the probabilities 

ip , it is useful to rewrite Eq. (32) as follows: 

   ˆ T

X X
p x x φ p  (34) 

where        (1) (2) ( )

1 2; , , ; , , , ; ,T N

NX X X X
x x x h x x h x x h     φ  and  1 2, , ,T

Np p pp  are vectors of 

order N. Multiplying both sides of Eq. (34) by kx (with 0,1,2, ,k M ). and integrating over the domain, 

taking into account Eqs. (33), the following system of equations is obtained: 

1 



T
1 p

Mp = μ
 (35a,b) 

where 1 is a unit vector of order N, M  is a matrix of order M N , whose elements, kim , are the moments 

of order k of the i-th basis PDF  ( ) ; ,i

i iX
x x h : 

 ( ) ; , d
b

k i

ki i iXa
m x x x h x   (36) 

while μ  is a vector of order M collecting the k-th moment derived from experimental data. In the system of 

equations (Eq. (35)) the number of moments M gives the data information. Here it is assumed that only the 

lower six moments ( 6M  ) can be derived with good accuracy from experimental data. 

The number N of kernel densities gives the resolution for the recovery of the target PDF  X
p x ; as 

much as N increases, computational complexity grows; it’s a good choice to select N in the range 20-100, 

being generally N lower than the Ns sample data. 

To solve the system (Eq. (35)) the Maximum Entropy method is adopted, that leads to find the unique 

minimum of the free functional  1 2, , ,ME

MH H     , where λi is the i-th Lagrange multiplier, defined 

as (Alibrandi and Ricciardi, 2008): 

186



Analysis of Truss Structures with Uncertainties: From Experimental Data to Analytical Responses 

 

 

REC 2016 - P. Longo, N. Maugeri, G. Muscolino and G. Ricciardi 

 

 1 2 0

1

, , ,
M

ME

M k k

k

H H      


                (37) 

where 

   0 0 1 2

1 1

, , , ln exp
N M

k

M k i

i k

x     
 

  
     

  
      

 (38) 

is the normalization constant, that can be expressed as a function of λ1,λ2,., λM, and 

 
1 1

1 2

1 1

exp

, , ,

exp

N M
k k

i j i

i j

k k M
N M

k

j i

i j

x x

x



    



 

 

 
  

 
 

 
 
 

 

 

    (39) 

The free function  1 2, , ,ME

MH H     is convex with respect to the Lagrange multipliers 

1 2, , , M   and, as a consequence, it has an unique minimum , which can be obtained through a standard 

convex optimization algorithm, with a limited number of iterations. 

The corresponding coefficients ip can be computed as: 

 0

1

exp
M

k

i k i

k

p x 


 
    

 
      (40) 

where the Lagrange multipliers are solution of the Maximum Entropy optimization problem (Alibrandi and 

Ricciardi, 2008). 

 

4. Numerical results versus experimental data 

 

Aim of this study is to perform the analysis of truss structures with uncertain Young elastic modulus 

under deterministic loads by applying both probabilistic and non-probabilistic approaches. To do this the 

Young elastic modulus is determined by several experiments on steel bars performed in the Laboratory of 

Structures and Materials of the Department of Engineering (University of Messina). Tensile strength tests, 

according to UNI EN ISO 15630-1, were performed on 128 specimens, using universal machine, Galdabini 

VB47, Quasar 1200 and elastic modulus was computed by electronic extensometer micron motor (class 0.5 

according to UNI EN ISO 9513). The main statistics of experimental data: Coefficient of Variation (CoV), 

/   ; skewness coefficient, 3

3, /   , and excess kurtosis, 4

4,( / ) 3    , are reported in Table I. 

In this section, the described procedure is applied to the benchmark truss structure depicted in Figure 1. 

The cross-sectional areas and Young’s moduli of five bars are A1=A2=A3=A4=A5=0.0009 [m2] and 

E0,1=E0,2=E0,3=E0,4=E0,5=2.1 106 [N/mm2] respectively. In particular, first, in the framework of probabilistic 

approaches, the statistics of the response are evaluated by applying the proposed formulation and compared 
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with the same obtained by Monte Carlo Simulation (MCS). Then, by applying the Improved Interval 

Analysis, the bounds of nodal response in terms of displacements are evaluated. 

Table I. Statistical results for Young Elastic Modulus from experimental data. 

N. Samples 128 

Mean:   [N/mm2] 198110.68 

Standard Deviation:  [N/mm2] 13868.14 

Minimum [N/mm2] 161742.41 

Median [N/mm2] 198147.39 

Maximum [N/mm2] 240816.20 

CoV 0.07 

Skewness Coefficient 0.4188 

Excess Kurtosis 4.8246 

 

 
 

Figure 1. Sketch of benchmark truss system. 

 
4.1. PROBABILISTIC APPROACH 

 

In the framework of the probabilistic approach and according to the Chauvenet criterion for the selection of 

the effective experimental results (Barbato et al., 2011), the Kernel PDF of the Young elastic modulus is 

evaluated in the interval domain [a,b] of existence of PDF which is chosen as  4.0 , 4.0        ; 

then, to avoid numeric instability, the interval is normalized into the domain [,1]. Finally the Kernel PDF 

is determined, according to Eq. (32), as a linear combination of 30 normal basis kernel densities, whose 

 

1 

A 

5 

4 
B 

F=100kN 

2 1 

3 

2 

y 

x 

45° 

L= 3 m 
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coefficient pi are computed by Eq. (40) once the Maximum Entropy optimization problem is solved 

(Alibrandi and Ricciardi, 2008). 

 

 
 

Figure 2. Comparison between Kernel PDF, Gaussian PDF and experimental data. 

 
The Kernel PDF is depicted in Figure 2 together with the histogram of experimental data and the 

Gaussian PDF having same mean value and standard deviation of experimental data. Clearly this figure 

shows as the Kernel PDF better fits experimental data. 

The nominal displacement vector 0

N
u  is evaluated as follows : 

1

0 0

N u K F              (41) 

obtaining: 

 

1

1

0

2

2

4.29699

1.12239

5.41939

1.12239

mm

x

yN

x

y

u

u

u

u

   
   
    
   
   

  

u ;          (42) 

To evaluate in explicit form the first two statistics of the response, the Kernel PDF, to satisfy the 

condition (13), has to be normalized into a lesser than 1 domain. This normalization has been performed by 

means of the following transformation: 

e 



 




             (43) 

where   is the mean value of Kernel PDF. So operating the normalized Kernel PDF of uncertain elastic 

modulus,  Ep e , represented in Figure 3, lies into the interval domain  0.28,0.28 . 

 

    Kernel PDF 

 Gaussian 

PDF 
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Figure 3. Normalized Kernel PDF. 

 

To test the accuracy of proposed method, in Table II are reported the mean values, 
ru , and the standard 

deviations,
ru , of displacements of studied structure, evaluated by means of Eqs. (17) and compared with 

the ones coming from MCS. In Table II the percentage errors are given, comparing the analytical data with 

the results obtained from MCS of 5000, 500 000, 1 000 000 samples. Negligible percentage errors confirm 

the accuracy of proposed method, provided a considerable reduction of the computational effort. 

 
Table II. Comparison between stochastic results and Monte Carlo Simulation (Kernel Density). 

 

Parameter 

[mm] 

analytical MCS 5000 Error [%] MCS  

500000 

Error [%] MCS 106 Error [%] 

µux1  4.31818 4.31884 0.0153 4.31854 0.0083 4.3180 -0.0037 

µuy1  1.12793 1.12768 -0.0222 1.12796 0.0027 1.1280 0.0062 

µux2  5.44611 5.44564 -0.0086 5.44658 0.0086 5.4468 0.0127 

µuy2 1.12793 1.12806 0.0115 1.12774 -0.0168 1.1280 0.0027 

σux1 0.23680 0.23715 0.1451 0.23677 -0.0114 0.2369 0.0355 

σuy1 0.07893 0.07943 0.6288 0.07876 -0.2174 0.0789 -0.0390 

σux2 0.24961 0.25103 0.5669 0.24949 -0.0481 0.2496 0.0024 

σuy2 0.07893 0.07801 -1.1898 0.07885 -0.1074 0.0789 0.0152 

 

The same analytical approach has been applied assuming a Gaussian PDF. In Table III the percentage 

errors between analytical results and MCS with 1.000.000 samples are reported, confirming the accuracy of 

proposed method. 
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Table III. Comparison between stochastic results and Monte Carlo Simulation (Gaussian PDF). 

 

Parameter[mm] analytical MCS106 Error[%] 

µux1  4.318

34 

4.3182

1 

-

0.0030 

µuy1  1.127

97 

1.1280

7 

0.008

9 

µux2  5.446

31 

5.4460

1 

-

0.0055 

µuy2 1.127

97 

1.1280

2 

0.004

4 

σux1 0.240

32 

0.2405

22 

0.085

6 

σuy1 0.080

11 

0.0801

257 

0.025

5 

σux2 0.253

32 

0.2534

63 

0.058

4 

σuy2 0.080

11 

0.0801

882 

0.103

4 

 

Table IV summarizes the 3rd and 4th order central moments sorted by MCS using 106 samples, for the 

adopted densities. 

 
Table IV. Comparison between 3rd and 4th order central momentsfor both PDF. 

 

Parameter Kernel PDF Gaussian PDF 

3,ux1 [mm3] 0.0042728 0.0053643 

3,uy1 [mm3] 0.0001791 0.0002233 

3,ux2 [mm3] 0.0044510 0.0055959 

3,uy2[mm3] 0.0001784 0.0002263 

4,ux1 [mm4] 0.0138060 0.0111287 

4,uy1 [mm4] 0.0001831 0.0001398 

4,ux2 [mm4] 0.0160580 0.0134891 

4,uy2[mm4] 0.0001835 0.0001405 

 

Such central moments combined with the MCS mean values and standard deviations are used to evaluate 

the CoVs, /u u  , the skewness coefficients, 3

3, /u u  , and excess kurtosis, 4

4,( / ) 3u u   , of both Kernel 

PDF and Gaussian PDF in terms of displacements. 

Due to nonlinear filtering of input data, it is well known that the expected structural response has 

property of non Gaussianity. Adopting the kernel density function, which takes in account of higher order 
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statistics of the input data, the structural response statistics of order higher than the second gives results 

which are different from the ones sorted by simply assuming the Gaussianity of input data (i.e. taking into 

account the input data statistics up to the second order). Such consideration justifies the need to take into 

account of input data statistics of higher order to the second, when it is interesting to well catch the non 

Gaussian character of structural response. 

On the other hand, the non Gaussianity of the response in both cases is highlighted by slightly right- 

tailed shape with respect to the mean of responses, as indicated by skewness coefficient, given in Table V 

where it is clearly evident that, adopting the Kernel PDF, the sensible higher value of excess kurtosis is 

provided. 

 
Table V. C.O.V., skewness coefficients and excess kurtosis of the responses. 

 

Parameter Kernel PDF Gaussian PDF 

1 1ux ux   0.055 0.056 

1 1uy u   0.070 0.071 

2 2ux ux   0.046 0.047 

2 2uy uy   0.070 0.071 

3

3, 1 1ux ux   0.3214 0.3855 

3

3, 1 1uy uy   0.3646 0.4342 

3

3, 2 2ux ux   0.2862 0.3437 

3

3, 2 2uy uy   0.3625 0.4390 

4, 1

4

1

3
ux

ux




  1.3845 0.3253 

4, 1

4

1

3
uy

uy




  1.7249 0.3909 

4, 2

4

2

3
ux

ux




  1.1361 0.2683 

4, 2

4

2

3
uy

uy




  1.7246 0.3985 

 

4.2. INTERVAL ANALYSIS 

 

It is well known that when the information on experimental data is incomplete or fragmentary, the interval 

analysis is a very efficient method to evaluate the propagation of the uncertainties on structural response. 

To define the interval of uncertainty, the knowledge of the distribution function is not required but its 

bounds only. Furthermore, according to the philosophy of interval analysis, the measured data define an 

interval with full confidence that the value is within the interval, and not outside it. That is, it is not a 
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confidence interval or credibility interval. Rather, the interval represents sure bounds of the measurement, 

with full degree of confidence on experimental data (Ferson et al., 2007).  

The starting point in using a bounded interval to model the measurement uncertainty is to acknowledge 

the intrinsic imprecision in measurement. In the studied truss structure, the population of experimental data 

is numerous, so that reliable results can be obtained by applying the probabilistic approach, described in the 

previous section. The aim of this section, is to compare the results provided by the probabilistic model with 

the ones evaluated by applying the Improved Interval Analysis. For this purpose, the first step is to define a 

reliable interval of the uncertain elastic modulus. A reasonable choice seems to be a normalized interval 

containing all experimental data, i.e.  0.28, 0.28   , which has been chosen for Kernel PDF evaluation. In 

Table VI, the chosen values of lower bound (LB),  , and upper bound (UB),  , as well as the midpoint, 

  2    , deviation,   2     , and Coefficient of Interval Uncertainty (C.I.U.), 
  , are 

reported. 

 
Table VI. Interval parameters for Young Elastic Modulus from experimental data (100% of experimental data). 

 

  [N/mm2] 142638.10 

  [N/mm2]  253583.26 

  [N/mm2]  198110.68 

  [N/mm2] 110945.16 

. . .C I U   0.28 

 

The corresponding midpoint displacement vector 0u  and the lower and the upper bounds of 

displacements vectors calculated by Eqs. (30) and (31) are given respectively as: 
 

     0

3.35701 5.96811

0.87686

4.23387 7.52701

0.87686

4.66256

1.21788 1.55890
mm mm ; mm ;

5.88044

1.21788 1.55890

     
     
       
     
     
     

u u u  

 

The difference between midpoint values and explicit mean value vectors for Kernel PDF and Gaussian 

PDF, reported in Table II and Table III, is reported in Table VII. 

In Figures 4-7 the bounds of interval responses, in terms of displacement, sorted by Improved Interval 

Analysis, are compared with the results obtained in terms of confidence range displacements, calculated as 

the mean value ± three times standard deviation of stochastic results, coming out by assuming maximum 

entropy approach and adopting the normal distribution. These Figures show that for the analysed truss 

structure, the confidence range lie into the bounds defined by Interval Analysis, if an interval that includes 

all experimental data is chosen. 
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Table VII. Comparison between mean values and midpoint displacements.  

 

Parameter

[mm] 0u  U
μ  

(Kernel PDF) 
U

μ  

(Gaussian PDF) 

Difference [%] 

(Kernel PDF) 

Difference [%] 

(Gaussian PDF) 

µux1 4.66256 4.31818 4.31834 7.3861 7.3826 

µuy1 1.21788 1.12793 1.12797 7.3858 7.3825 

µux2 5.88044 5.44611 5.44631 7.3860 7.3826 

µuy2 1.21788 1.12793 1.12797 7.3858 7.3825 

 

 

 
 

Figure 4. ux1: interval analysis bounds and Kernel and Gaussian PDF 3 .u u   

 
 

Figure 5.uy1: interval analysis bounds and Kernel and Gaussian PDF 3 .u u   
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Figure 6. ux2: interval analysis bounds and Kernel and Gaussian PDF 3 .u u   

 

 
 

Figure 7. uy2: interval analysis bounds and Kernel and Gaussian PDF 3 .u u   

 

 

5. Conclusions 

Starting from tensile tests performed on steel bars, where elastic moduli are measured, the PDF of 

uncertain elastic modulus was recovered by maximum entropy approach. This function was adopted for the 

static analysis of a truss structure to evaluate stochastic structural response by means the Rational Series 

Expansion  technique. The comparison with Monte Carlo Simulation results confirmed the accuracy of 

method. 

In order to compare the results provided by the probabilistic model with the ones evaluated by applying 

the Improved Interval Analysis, the confidence range displacement, calculated as the mean value ± three 
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times standard deviation of stochastic results, is determined. Then the bounds of the response interval by 

applying the Improved Interval Analysis are evaluated. The comparison of two response intervals showed 

that the selected confidence range lies into the bounds defined by Interval Analysis if, for the uncertain 

elastic modulus, the interval that includes all experimental data is chosen. 
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